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Abstract—Problems requiring accurate determination of parameters from image-

based quantities arise often in computer vision. Two recent, independently

developed frameworks for estimating such parameters are the FNS and HEIV

schemes. Here, it is shown that FNS and a core version of HEIV are essentially

equivalent, solving a common underlying equation via different means. The

analysis is driven by the search for a nondegenerate form of a certain generalized

eigenvalue problem and effectively leads to a new derivation of the relevant case of

the HEIV algorithm. This work may be seen as an extension of previous efforts to

rationalize and interrelate a spectrum of estimators, including the renormalization

method of Kanatani and the normalized eight-point method of Hartley.

Index Terms—Statistical methods, maximum likelihood, (un)constrained

minimization, fundamental matrix, epipolar equation.
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1 INTRODUCTION

ESTIMATION of the parameters that describe a relationship between
image feature locations, possibly across multiple cameras, is a
central problem in computer vision. Basic examples include the
stereo and motion problems of estimating coefficients of the
epipolar equation [1] and the differential epipolar equation [2], and
conic fitting [3]. The principal equation applicable in a variety of
situations, including those specified above, takes the form

����TuuuuðxxxxÞ ¼ 0: ð1Þ

Here, ���� ¼ ½�1; . . . ; �l�T is a vector representing unknown parameters;

xxxx ¼ ½x1; . . . ; xk�T is a vector representing an element of the data (for

example, the locations of a pair of corresponding points); and uuuuðxxxxÞ ¼
½u1ðxxxxÞ; . . . ; ulðxxxxÞ�T is a vector with the data transformed in a problem-

dependent manner such that: 1) each component uiðxxxxÞ is a quadratic

form in the compound vector ½xxxxT ; 1�T and 2) one component is equal

to 1. In some cases, the parameters are subject to an ancillary constraint

not involving feature locations. A common form of the ancillary

constraint is

�ð����Þ ¼ 0; ð2Þ

where, for some real number �, � is a scalar-valued function

homogeneous of degree �—that is such that �ðt����Þ ¼ t��ð����Þ for every

���� and every nonzero scalar t.
The estimation problem associated with (1) and (2) can be stated

as follows: Given a collection fxxxx1; . . . ; xxxxng of image data and a

meaningful cost function that characterizes the extent to which any

particular ���� fails to satisfy the system of the copies of (1) associated

with xxxx ¼ xxxxi (i ¼ 1; . . . ; n), find ���� 6¼ 0 satisfying (2) for which the

cost function attains its minimum. The Gaussian model of errors in

data combined with the principle of maximum likelihood leads to the

cost function

JAMLð����;xxxx1; . . . ; xxxxnÞ ¼
Xn
i¼1

����TuuuuðxxxxiÞuuuuðxxxxiÞT ����
����T @xxxxuuuuðxxxxiÞ��xxxxi @xxxxuuuuðxxxxiÞT ����

;

where, for any length k vector yyyy, @xxxxuuuuðyyyyÞ denotes the l� k matrix of
the partial derivatives of the function xxxx 7! uuuuðxxxxÞ evaluated at yyyy, and,
for each i ¼ 1; . . . ; n, ��xxxxi is a k� k symmetric covariance matrix
describing the uncertainty of the data point xxxxi (see [4], [5], [6]). If
JAML is minimized over those nonzero parameter vectors for which
(2) holds, then the vector at which the minimum of JAML is
attained, the constrained minimizer of JAML, defines the approxi-
mated maximum likelihood estimate b��������AML. The unconstrained mini-
mizer of JAML obtained by ignoring the ancillary constraint and
searching over all of the parameter space defines the unconstrained
approximated maximum likelihood estimate b��������uAML. The function
���� 7! JAMLð����; xxxx1; . . . ; xxxxnÞ is homogeneous of degree zero and the
zero set of � is unaffected by multiplication by nonzero scalars, so
both b��������AML and b��������uAML are determined only up to scale.

Various methods are available for finding b��������uAML. One is the
fundamental numerical scheme (FNS) introduced by Chojnacki et al. in
[5]. Another is, as will be revealed shortly, a certain version of the
heteroscedastic errors-in-variables (HEIV) scheme that was first pro-
posed by Leedan and Meer [7] and further developed by Matei and
Meer [8], [9]. The FNS method operates over the entire parameter
space, whereas the HEIV method operates essentially on a subspace
of one dimension less and recuperates the missing dimension in a
single final step. This paper aims to understand the previously
unclear relationship between the two schemes. It is shown that the
algorithms are two different, but intimately related, means for
numerically solving one and the same equation characterizing b��������uAML.
In the analysis that follows, FNS is taken as a starting point, and
HEIV is evolved via reduction of a certain generalized eigenvalue
problem to a nondegenerate form. This approach effectively results
in a new derivation of the relevant case of the HEIV algorithm.

Determination of b��������AML is a much more complicated task than
isolation of b��������uAML. Recently, an integrated method for calculatingb��������AML was proposed that extends the FNS technique [10], [11]. The
present contribution may provide a basis for designing a similar
extension to the HEIV framework. From a broader perspective, this
work may also be seen as an extension of previous efforts to
rationalize and interrelate a spectrum of estimators, including the
renormalization method of Kanatani [12] and the normalized
eight-point method of Hartley [13].

2 FUNDAMENTAL NUMERICAL SCHEME

The unconstrained minimizer b��������uAML satisfies the variational equation
for unconstrained minimization

½@����JAMLð����; xxxx1; . . . ; xxxxnÞ�����¼b���� u
AML

¼ 0T ð3Þ

with @����JAML the row vector of the partial derivatives of JAML with
respect to ����. Direct computation shows that

½@����JAMLð����;xxxx1; . . . ; xxxxnÞ�T ¼ 2XXXX��������; ð4Þ

where XXXX���� is an l� l symmetric matrix given by

XXXX���� ¼
Xn
i¼1

AAAAi

����TBBBBi����
�
Xn
i¼1

����TAAAAi����

ð����TBBBBi����Þ2
BBBBi;

AAAAi ¼ uuuuðxxxxiÞuuuuðxxxxiÞT ; BBBBi ¼ @xxxxuuuuðxxxxiÞ����xxxxi@xxxxuuuuðxxxxiÞ
T :

Thus, (3) can be written as

½XXXX�������������¼b���� u
AML

¼ 0: ð5Þ

An algorithm for numerically solving this equation proposed in
[5] exploits the fact that a vector ���� satisfies (5) if and only if it is a
solution of the ordinary eigenvalue problem
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XXXX�������� ¼ ����� ð6Þ

corresponding to the eigenvalue � ¼ 0. Thus, if ����k�1 is an
approximate solution, then an improved solution can be obtained
by picking a vector ����k from that eigenspace of XXXX����k�1

which most

closely approximates the null space of XXXX����; this eigenspace is, of
course, the one corresponding to the eigenvalue closest to zero in
absolute value. The fundamental numerical scheme [5] implement-
ing this idea is presented in Fig. 1. The scheme is seeded with
the algebraic least squares (ALS) estimate, b��������ALS, defined as the

unconstrained minimizer of the cost function JALSð����; xxxx1; . . . ; xxxxnÞ ¼
k����k�2 Pn

i¼1 ����
TAAAAi����; with k����k ¼ ð

Pl
j¼1 �

2
j Þ

1=2. The estimate b��������ALS
coincides, up to scale, with an eigenvector of

Pn
i¼1 AAAAi associated

with the smallest eigenvalue, and this can be found by performing
singular-value decomposition of the matrix ½uuuuðxxxx1Þ; . . . ; uuuuðxxxxnÞ�T .

3 BASIC HEIV SCHEME

An alternative parameter estimation framework, derived in a quite
different manner to FNS, has been proposed by Leedan and Meer
[7] and further extended by Matei and Meer [8], [9]. As will
become apparent shortly, a core method of this framework that we
will term HEIV with carrier bias correction eliminated is effectively a
different means for numerically solving (5). In one form, this
method relies upon re-expressing XXXX���� as

XXXX���� ¼ MMMM���� �NNNN����

with

MMMM���� ¼
Xn
i¼1

AAAAi

����TBBBBi����
; NNNN���� ¼

Xn
i¼1

����TAAAAi����

ð����TBBBBi����Þ2
BBBBi;

and restating the variational equation (5) as

MMMM�������� ¼ NNNN��������; ð7Þ

where the evaluation at b��������uAML is dropped for clarity. The matrices

MMMM���� and NNNN���� are nonnegative definite (with MMMM���� generically positive

definite if n � l), so ���� can be viewed as a solution of the generalized

eigenvalue problem

MMMM�������� ¼ �NNNN�������� ð8Þ

corresponding to the eigenvalue � ¼ 1. The basic heteroscedastic

errors-in-variables scheme (see Section 7 for a clue as to the name)
is an algorithm for solving (7) that exploits the above eigenvalue
problem in a manner analogous to that in which FNS utilizes the
eigenvalue problem (6). The scheme is a variation on the technique
proposed in [7], [8], [9]. The details are given in Fig. 2.

As is easily seen from (12) below, the null space of each matrix BBBBi

contains the length l vector ½0; . . . ; 0; 1�T . Consequently, NNNN���� is
singular. Now, if ���� is a “true” parameter vector and xxxx1; . . . ; xxxxn are
noise-free data satisfying ����TuuuuðxxxxiÞ ¼ 0 for each i ¼ 1; . . . ; n, then MMMM����

is also singular, having ���� in its null space. As is well known, if both
MMMM���� and NNNN���� are simultaneously rank-deficient (or almost rank-
deficient, which happens, for example, when ���� is close to a “true”

parameter vector and the data are just a tiny perturbation of noise-

free data), then solving the eigenvalue problem (8) is prone to

numerical instability [14]. One way to get around this difficulty is to

reduce the eigenvector problem (8) to a similar problem involving a

positive definite right-hand side matrix. Such a reduction is best

achieved by reformulating the variational equation (7). This is

described next.

4 REDUCED VARIATIONAL EQUATION

The vector uuuuðxxxxÞ has one entry equal to 1 and can be written as

uuuuðxxxxÞ ¼ ½zzzzzzzzðxxxxÞT ; 1�T ; ð9Þ

where zzzzzzzzðxxxxÞ is a “pure measurement” vector of length l� 1. The

vector of parameters ���� can be partitioned conformally as

���� ¼ ½����T ; ��T ð10Þ

with ���� a length l� 1 vector and � a scalar. We are going to show

that the variational equation (7) is equivalent to a system of two

equations, one of which involves only ���� and can be solved in

isolation, and the other expresses � in terms of ����. The first equation

will lead to a desired nondegenerate eigenvalue problem.
We begin by noting that, in view of (9),

AAAAi ¼ uuuuðxxxxiÞuuuuðxxxxiÞT ¼
zzzzzzzzizzzzzzzz

T
i zzzzzzzzi

zzzzzzzzTi 1

2
4

3
5 ð11Þ

for each i ¼ 1; . . . ; n; here, of course, zzzzzzzzi is short for zzzzzzzzðxxxxiÞ. Another
consequence of (9) is the identity

@xxxxuuuuðxxxxÞ ¼
@xxxxzzzzzzzzðxxxxÞ

0T

2
4

3
5;

which implies that, for each i ¼ 1; . . . ; n,

BBBBi ¼
BBBB0

i 0

0T 0

2
4

3
5; ð12Þ

with BBBB0
i ¼ @xxxxzzzzzzzzðxxxxiÞ����xxxxi@xxxxzzzzzzzzðxxxxiÞ

T . For each i ¼ 1; . . . ; n, define a

weight

�i ¼
1

����TBBBB0
i ����

ð13Þ

that depends on the ith element of data xxxxi, its covariance ����xxxxi , and

the parameter vector ����. Let ~zzzzzzzzzzzzzzzz be the centroid of the zzzzzzzzi given by

~zzzzzzzzzzzzzzzz ¼
Pn

i¼1 �izzzzzzzzzzzzzzzziPn
i¼1 �i

; ð14Þ
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Fig. 1. Fundamental numerical scheme.

Fig. 2. Basic HEIV scheme.



and, for each i ¼ 1; . . . ; n, let

zzzzzzzz0i ¼ zzzzzzzzi � ~zzzzzzzzzzzzzzzz ð15Þ

be the ith pure measurement vector relative to ~zzzzzzzzzzzzzzzz. Define two ðl�
1Þ � ðl� 1Þ matrices

MMMM 0
���� ¼

Xn
i¼1

�izzzzzzzz
0
izzzzzzzz

0
i
T ; NNNN 0

���� ¼
Xn
i¼1

�izzzzzzzz
0
i
T ����

� �2
BBBB0

i :

Upon introducing AAAA0
i ¼ zzzzzzzz0izzzzzzzz

0
i
T , the matrices MMMM 0

���� and NNNN 0
���� can also be

written as

MMMM 0
���� ¼

Xn
i¼1

AAAA0
i

����TBBBB0
i ����

; NNNN 0
���� ¼

Xn
i¼1

����TAAAA0
i ����

ð����TBBBB0
i ����Þ

2
BBBB0

i ;

which reveals their resemblance to MMMM���� and NNNN����. The choice of the
weights �i is largely motivated by the desire to achieve such a
resemblance in the first place. Obviously, MMMM 0

���� and NNNN 0
���� both depend

not only on ����, but also on the data and their covariances.
We now show that ���� ¼ ½����T ; ��T satisfies (7) if and only if the

following system of equations holds:

MMMM 0
�������� ¼ NNNN 0

��������; ð16Þ
� ¼ �~zzzzzzzzzzzzzzzzT ����: ð17Þ

Note that the first equation constrains solely ���� and, therefore, can
be solved separately. Once ���� is determined, � is readily prescribed
by the second equation. As will become apparent shortly, the
equations decouple as a result of the specific choice of the centroid
~zzzzzzzzzzzzzzzz. Of the two constraints, the first plays a leading role and will be
called the reduced variational equation. A key feature of this equation
is that its right-hand side matrix NNNN 0

���� , unlike NNNN����, is generically
positive definite if n � l.

To show the equivalence of (7) and the system comprising (16)
and (17), first note that, by (10) and (12), ����TBBBBi���� ¼ ����TBBBB0

i ���� and,
further, by (13),

�i ¼
1

����TBBBBi����
ð18Þ

for each i ¼ 1; . . . ; n. Consequently,

MMMM���� ¼
Xn
i¼1

�iAAAAi: ð19Þ

Observe next that, in view of (12),

NNNN���� ¼
NNNN0

���� 0

0T 0

2
4

3
5 ð20Þ

with

NNNN0
���� ¼

Xn
i¼1

����TAAAAi����

ð����TBBBBi����Þ2
BBBB0

i :

Now, if ���� ¼ ½����T ; ��T satisfies (7), then, in view of (11), (19), and (20),
(7) can be rewritten as

Xn
i¼1

�i

zzzzzzzzizzzzzzzz
T
i zzzzzzzzi

zzzzzzzzTi 1

2
4

3
5 ����

�

2
4

3
5 ¼

NNNN0
���� 0

0T 0

2
4

3
5 ����

�

2
4

3
5;

or equivalently as the system

Xn
i¼1

�ið�zzzzzzzzi þ zzzzzzzzizzzzzzzz
T
i ����Þ ¼ NNNN0

��������; ð21Þ

Xn
i¼1

�ið�þ zzzzzzzzTi ����Þ ¼ 0: ð22Þ

On account of (14) and (22),

�þ ~zzzzzzzzzzzzzzzzT ���� ¼
Pn

i¼1 �ið�þ zzzzzzzzTi ����ÞPn
i¼1 �i

¼ 0; ð23Þ

and this immediately yields (17). To show that (16) also holds, note

that, by (9) and (10), for each i ¼ 1; . . . ; n,

uuuuðxxxxiÞT ���� ¼ �þ zzzzzzzzTi ����;

and, by (15) and (17),

�þ zzzzzzzzTi ���� ¼ ðzzzzzzzzi � ~zzzzzzzzzzzzzzzzÞT ���� ¼ zzzzzzzz0i
T ����:

Hence

����TAAAAi���� ¼ ðuuuuðxxxxiÞT ����Þ2 ¼ ðzzzzzzzz0iT ����Þ
2:

This together with (18) implies that

����TAAAAi����

ð����TBBBBi����Þ2
¼ ð�izzzzzzzz0iT ����Þ

2;

whence immediately NNNN0
���� ¼ NNNN 0

����. With this identity, (21) can be

rewritten as

Xn
i¼1

�ið�zzzzzzzzi þ zzzzzzzzzzzzzzzzizzzzzzzz
T
i ����Þ ¼ NNNN 0

��������: ð24Þ

On the other hand, taking (15) into account, we see that

Xn
i¼1

�ið�zzzzzzzzi þ zzzzzzzzizzzzzzzz
T
i ����Þ ¼

Xn
i¼1

�izzzzzzzzið�þ zzzzzzzzTi ����Þ ¼
Xn
i¼1

�iðzzzzzzzz0i þ ~zzzzzzzzzzzzzzzzÞð�þ zzzzzzzzTi ����Þ:

ð25Þ

By (22),

Xn
i¼1

�i~zzzzzzzzzzzzzzzzð�þ zzzzzzzzTi ����Þ ¼ ~zzzzzzzzzzzzzzzz
Xn
i¼1

�ið�þ zzzzzzzzTi ����Þ ¼ 0; ð26Þ

and by (15) and (23),

Xn
i¼1

�izzzzzzzz
0
ið�þ zzzzzzzzTi ����Þ ¼

Xn
i¼1

�izzzzzzzz
0
ið�þ ~zzzzzzzzzzzzzzzzT ���� þ zzzzzzzz0i

T ����Þ ¼
Xn
i¼1

�izzzzzzzz
0
izzzzzzzz

0
i
T ���� ¼ MMMM 0

��������:

ð27Þ

Combining (25), (26), and (27), we obtain

Xn
i¼1

�ið�zzzzzzzzi þ zzzzzzzzizzzzzzzz
T
i ����Þ ¼ MMMM 0

��������:

This jointly with (24) finally yields (16), as desired.
Working backward, one can easily infer that if ���� satisfies (16)

and � is given by (17), then ���� ¼ ½����T ; ��T satisfies (7).

5 REDUCED HEIV SCHEME

The algebraic least squares estimates b��������ALS and b��ALS are naturally

defined as the respective components in the representation

b��������ALS ¼ ðb��������ALSÞT ; b��ALS

h iT
:

Analogously, the unconstrained approximated maximum like-

lihood estimates b��������uAML and b��u
AML are defined via the decomposition

b��������uAML ¼ ðb��������uAMLÞ
T ; b��u

AML

h iT
:

In view of (17), b��u
AML is uniquely determined by b��������uAML—when the

centroid ~zzzzzzzzzzzzzzzz is taken with the weights
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�i ¼
1

ðb��������uAMLÞ
TBBBB0

i b��������uAML

;

then b��u
AML ¼ �~zzzzzzzzTb��������uAML. Now, the generalized eigenvalue problem

MMMM 0
����				 ¼ �NNNN 0

����				 ð28Þ

is nondegenerate: the matrix NNNN 0
���� is positive definite. Accordingly,b��������uAML can be determined with use of a simple modification of the

HEIV algorithm. The steps of this reduced HEIV scheme are given in
Fig. 3. It is essentially in this form that the HEIV algorithm was first
advanced [7], [8]. The original version employs a slightly different,
bias-corrected form of the vector of carriers uuuuðxxxxÞ. The reduced scheme,
based solely on uuuuðxxxxÞ, constitutes HEIV with carrier bias correction
eliminated. Both versions are comparable in performance, but since
the one with carrier bias correction eliminated is somewhat simpler,
it is this version that was eventually recognized as the fundamental
form of the HEIV algorithm [9].

It is worth mentioning that Leedan and Meer [7] proposed a
robust procedure for solving the eigenvalue problem (28) based
upon generalized singular value decomposition of a pair of matrices
ðSSSS����; TTTT����Þ satisfying MMMM 0

���� ¼ SSSST
���� SSSS���� and NNNN 0

���� ¼ TTTTT
���� TTTT����.

Finally, we remark that reduction to a nondegenerate form of
eigenvalue problems similar to (28) is crucial for computing some
other types of estimates, notably Kanatani-like renormalization
estimates [12] [4, chapter 9] (these are approximates of b��������uAML of
some sort) and ellipse-specific estimates obtainable with use of an
improved version of the direct least-squares fitting algorithm of
Fitzgibbon et al. [3], due to Halı́r and Flusser [15].

6 STABLE HEIV SCHEME

The reduced HEIV scheme is locally convergent—to work, it
requires the initial iterate to be close to a solution of (16). A more
stable version of the algorithm, able to cope with a less accurate
initial iterate, results from selecting the eigenvector corresponding to
the smallest eigenvalue instead of the eigenvector corresponding to
the eigenvalue closest to 1. Leedan and Meer remark that this
modified method converges successfully (in fact, with high
convergence rate) even when seeded with a random initial estimate.
Typically, the minimal eigenvalues computed after a first iteration
are also the closest to 1, and so from the second iteration onwards the
modified algorithm acts effectively as the original version. Without
the modification, the scheme may exhibit slow convergence or even
divergence.

7 ORIGINS OF HEIV

The original derivation of the HEIV algorithm, as given in [7], [8],
[9], is different from the one presented here. In our exposition, the
core of HEIV, namely its reduced form, results from reformulating
the variational equation so that the associated generalized
eigenvalue problem becomes nondegenerate. The original deriva-
tion is based on a direct application of the maximum likelihood
principle to a statistical model operating with candidate prob-

ability distributions for zzzzzzzzðx1Þ; . . . ; zzzzzzzzðxnÞ, with the random variables
x1; . . .xn modeling the image data xxxx1; . . . ; xxxxn. When the xi have
equal variances (as is often assumed), the zzzzzzzzðxiÞ form, as a rule, a
heteroscedastic set of random variables, that is having different
variances. This explains the term “heteroscedastic” in the name of
the HEIV algorithm. The “errors-in-variables” part of the label
alludes to the adopted statistical model being a so-called errors-in-
variables model—the scalar components of each xi are not
segregated into two exclusive groups of explanatory (essentially
nonrandom) and response (random) variables, and are all
consistently treated as random variables.

8 EXPERIMENTS

Relative performance of the FNS and HEIV methods was
experimentally assessed by running a series of simulations
involving synthetic data. The particular problem considered was
estimation of epipolar geometry. It turns out that, in this case, the
vector of carriers is unbiased and the original version of HEIV
involving bias corrected carriers coincides with the version with
carrier bias correction eliminated. A single element of data took the
form of matched corresponding points from left and right images
of a stereo pair and the goal was to estimate the associated
fundamental matrix. Details of the various expressions involved are
presented elsewhere [5].

In our experiments, five estimation methods were tested,

denoted as ALS, FNS, HB, HR, and HEIV. ALS is the simple, direct

algebraic least squares method described in Section 2. It is included

as a method of a different category to give a sense of scale to the

forthcoming numerical results. The FNS, HB, and HR methods were

implemented as specified in Figs. 1, 2, and 3, respectively. These

iterative methods were terminated when the difference in norm

between successive estimates was less than a common, very small

threshold. Estimates of the final method, HEIV, were obtained using

the MATLAB source code supplied by the authors of the original

HEIV papers [16].
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Fig. 3. Reduced HEIV scheme.

Fig. 4. Performance histograms for each of the methods, with JAML bins on the

x-axes, and frequencies of occurrence on the y-axes.



The simulations were based on a set of “true” pairs of
corresponding points generated by selecting a realistic stereo
camera configuration, randomly choosing many 3D points, and
projecting the 3D points onto two image planes. Only those scene
points were considered that had both projections confined to the
image size of 1; 000� 1; 000 pixels.

For each of N ¼ 5; 000 iterations, the true corresponding points

were perturbed by homogeneous Gaussian jitter to produce noisy

points. These noisy points were then used to generate a

fundamental matrix estimate for each of the five estimation

methods. For each estimate, the value of the JAML cost function

was computed. Comparison was undertaken in this realm as JAML

is the basis for our rationalizing and linking of the various iterative

methods considered. Note that the singularity constraint was not

imposed, as this would otherwise obfuscate comparison (the

constraint is usually implemented as a separate postprocess). In

these tests, the level of noise was fixed at 
 ¼ 1:0 pixels, although

similar results were obtained using different noise levels.

Fig. 4 shows the histograms of JAML values associated with

each of the estimators. In contrast with the ALS method, the

iterative methods generate very similar response profiles.

Table 1 compares estimators pairwise by showing both the

maximum and average differences in associated JAML values

over the complete set of trials. The respective top left elements

are computed via the expressions max1�i�N jJAMLðb��������iHEIVÞ �
JAMLðb��������iALSÞj and N�1

PN
i¼1 jJAMLðb��������iHEIVÞ � JAMLðb��������iALSÞj. The re-

sults demonstrate that the methods FNS, HB, HR, and HEIV

deliver estimates whose associated JAML values are extremely

close. As would be expected from the earlier theory, the HR

and HEIV methods prove to be almost numerically identical.
Some MATLAB code implementing aspects of the above may

be found at [17].

9 CONCLUSION

In this work, aspects of the FNS and HEIV frameworks for

estimating parameters from image-based data were examined. It

was shown that FNS and a core version of HEIV are essentially

equivalent, both in terms of analytical formulation and numerical

outcome. In this way, further understanding is gained about the

interrelationships between members of the spectrum of estimators

available for computation of geometric parameters. Given that the

FNS scheme has been recently upgraded to incorporate constraint

in a fully integrated manner, the opportunity now exists to

enhance the HEIV framework in a similar manner.
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TABLE 1
Maximum and Average Differences in JAML Values for Different Estimation Methods
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